A robot's dynamics -- especially the degree and location of compliance -- can significantly affect performance and control complexity. Passive dynamics can be designed with good regions of attraction or limit cycles for a specific task, but achieving flexibility on a range of tasks requires co-design of control. This paper takes an information perspective: the robot dynamics should reduce the amount of information required for a controller to achieve a threshold of performance in a range of tasks. Towards this goal, an iterative method is proposed to minimize the directed information from state to control on discrete-time nonlinear systems. iLQG is used to find a controller and value of information, then the design parameters of the dynamics (e.g. stiffness of end-effector or joint) are optimized to reduce directed information while maintaining a minimum bound on performance. The approach is validated in simulation, on a two-mass system in contact with an uncertain wall position and a high-DOF door opening task, and shown to improve noise robustness and reduce time variance of control gains.
翻译:机器人的动态 -- -- 特别是合规的程度和位置 -- -- 能够显著影响性能和控制复杂性。被动动态可以设计出具有吸引或限制特定任务周期的良好区域,但要在一系列任务上实现灵活性需要共同设计控制。本文从信息角度出发:机器人动态应当减少控制员在一系列任务中达到性能阈值所需的信息量。为实现这一目标,建议了一种迭接方法,以最大限度地减少从国家到控制离散时间非线性系统的定向信息。 iLQG用于寻找控制器和信息价值,然后优化动态的设计参数(例如终端效应或联合效应的僵硬性),以减少定向信息,同时保持最低性能约束。该方法在模拟、与不确定的墙位置和高DOF门开启任务接触的两重系统上得到验证,并显示能够提高噪音的稳健性和减少控制收益的时间差异。