Variable screening methods have been shown to be effective in dimension reduction under the ultra-high dimensional setting. Most existing screening methods are designed to rank the predictors according to their individual contributions to the response. As a result, variables that are marginally independent but jointly dependent with the response could be missed. In this work, we propose a new framework for variable screening, Random Subspace Ensemble (RaSE), which works by evaluating the quality of random subspaces that may cover multiple predictors. This new screening framework can be naturally combined with any subspace evaluation criterion, which leads to an array of screening methods. The framework is capable to identify signals with no marginal effect or with high-order interaction effects. It is shown to enjoy the sure screening property and rank consistency. We also develop an iterative version of RaSE screening with theoretical support. Extensive simulation studies and real-data analysis show the effectiveness of the new screening framework.


翻译:在超高维度设置下,变量筛选方法已证明在降低维度方面是有效的,大多数现有筛选方法的设计是为了根据预测者对响应的个别贡献对预测者进行排位。因此,可能忽略了与响应互为依存的略有独立的变量。在这项工作中,我们提出了一个新的变量筛选框架,即随机子空间集合(RASE),通过评估可能包含多个预测者的随机子空间的质量来发挥作用。这个新的筛选框架可以自然地与任何子空间评估标准结合起来,从而产生一系列筛选方法。这个框架能够识别无边际效应或具有高分级交互效应的信号。它显示它享有可靠的筛选属性和等级一致性。我们还在理论支持下开发了一台迭代版的RASE筛选。广泛的模拟研究和真实数据分析显示了新的筛选框架的有效性。

0
下载
关闭预览

相关内容

《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
《机器学习思维导图》,一图掌握机器学习知识要点
专知会员服务
68+阅读 · 2021年1月12日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员