Hybrid cloud provides an attractive solution to microservices for better resource elasticity. A subset of application components can be offloaded from the on-premises cluster to the cloud, where they can readily access additional resources. However, the selection of this subset is challenging because of the large number of possible combinations. A poor choice degrades the application performance, disrupts the critical services, and increases the cost to the extent of making the use of hybrid cloud unviable. This paper presents Atlas, a hybrid cloud migration advisor. Atlas uses a data-driven approach to learn how each user-facing API utilizes different components and their network footprints to drive the migration decision. It learns to accelerate the discovery of high-quality migration plans from millions and offers recommendations with customizable trade-offs among three quality indicators: end-to-end latency of user-facing APIs representing application performance, service availability, and cloud hosting costs. Atlas continuously monitors the application even after the migration for proactive recommendations. Our evaluation shows that Atlas can achieve 21% better API performance (latency) and 11% cheaper cost with less service disruption than widely used solutions.
翻译:暂无翻译