Current state-of-the-art large-scale conversational AI or intelligent digital assistant systems in industry comprises a set of components such as Automatic Speech Recognition (ASR) and Natural Language Understanding (NLU). For some of these systems that leverage a shared NLU ontology (e.g., a centralized intent/slot schema), there exists a separate skill routing component to correctly route a request to an appropriate skill, which is either a first-party or third-party application that actually executes on a user request. The skill routing component is needed as there are thousands of skills that can either subscribe to the same intent and/or subscribe to an intent under specific contextual conditions (e.g., device has a screen). Ensuring model robustness or resilience in the skill routing component is an important problem since skills may dynamically change their subscription in the ontology after the skill routing model has been deployed to production. We show how different modeling design choices impact the model robustness in the context of skill routing on a state-of-the-art commercial conversational AI system, specifically on the choices around data augmentation, model architecture, and optimization method. We show that applying data augmentation can be a very effective and practical way to drastically improve model robustness.


翻译:目前工业中最先进的大规模谈话AI或智能数字辅助系统由自动语音识别和自然语言理解等一系列组成部分组成。对于一些利用共享NLU肿瘤学的系统(例如中央意图/绘图系统)来说,存在一个单独的技能路由组件,可以正确将请求引入适当的技能,这种技能要么是一种第一方或第三方应用程序,可以实际满足用户的要求。需要技能路由部分,因为有数千种技能既可以接受相同的意向,也可以在特定环境条件下(例如,装置有一个屏幕)接受某种意向。对于其中一些系统来说,在技能路由部分中确保模型的稳健性或复原力是一个重要问题,因为技能在技能路由模型被部署到生产之后,技能可能会动态地改变其对在线技术的订阅。我们展示了不同的模型设计选择如何影响在技术路由方面的模式的稳健性,具体而言,就是在特定环境条件下(例如,装置有一个屏幕)接受相同的意向和/或接受某种意向。在技能路由部分中确保模型的稳健性或弹性性是一个重要问题,因为技能在技能路由模型模型被运用后,技能可能会动态改变其在电文库中的订阅。我们可以大大地改进数据结构。

0
下载
关闭预览

相关内容

【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Towards Topic-Guided Conversational Recommender System
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员