Neural Machine Translation models are sensitive to noise in the input texts, such as misspelled words and ungrammatical constructions. Existing robustness techniques generally fail when faced with unseen types of noise and their performance degrades on clean texts. In this paper, we focus on three types of realistic noise that are commonly generated by humans and introduce the idea of visual context to improve translation robustness for noisy texts. In addition, we describe a novel error correction training regime that can be used as an auxiliary task to further improve translation robustness. Experiments on English-French and English-German translation show that both multimodal and error correction components improve model robustness to noisy texts, while still retaining translation quality on clean texts.


翻译:神经机器翻译模型对输入文本中的噪音十分敏感,例如拼错字和不语法构造。现有稳健技术在面对隐蔽类型的噪音时一般会失败,其性能会降低清洁文本。在本文中,我们侧重于人类通常产生的三种现实的噪音,并引入视觉环境概念,以提高噪音文本翻译的稳健性。此外,我们描述了一个新的错误纠正培训制度,可以用作进一步提高翻译稳健性的辅助任务。英语-法语和英语-德语翻译实验显示,多式联运和错误校正部分都提高了对吵闹文本的模型稳健性,同时仍然保留了清洁文本的翻译质量。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器翻译 | Bleu:此蓝;非彼蓝
黑龙江大学自然语言处理实验室
4+阅读 · 2018年3月14日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年3月28日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Top
微信扫码咨询专知VIP会员