The recently proposed DEtection TRansformer (DETR) has established a fully end-to-end paradigm for object detection. However, DETR suffers from slow training convergence, which hinders its applicability to various detection tasks. We observe that DETR's slow convergence is largely attributed to the difficulty in matching object queries to relevant regions due to the unaligned semantics between object queries and encoded image features. With this observation, we design Semantic-Aligned-Matching DETR++ (SAM-DETR++) to accelerate DETR's convergence and improve detection performance. The core of SAM-DETR++ is a plug-and-play module that projects object queries and encoded image features into the same feature embedding space, where each object query can be easily matched to relevant regions with similar semantics. Besides, SAM-DETR++ searches for multiple representative keypoints and exploits their features for semantic-aligned matching with enhanced representation capacity. Furthermore, SAM-DETR++ can effectively fuse multi-scale features in a coarse-to-fine manner on the basis of the designed semantic-aligned matching. Extensive experiments show that the proposed SAM-DETR++ achieves superior convergence speed and competitive detection accuracy. Additionally, as a plug-and-play method, SAM-DETR++ can complement existing DETR convergence solutions with even better performance, achieving 44.8% AP with merely 12 training epochs and 49.1% AP with 50 training epochs on COCO val2017 with ResNet-50. Codes are available at https://github.com/ZhangGongjie/SAM-DETR .


翻译:最近提议的变异变异仪( DETR) 建立了完全端到端的物体探测范式( DETR) 。 但是, DETR++ 是一个插件和剧本模块, 用于将查询和编码图像特性植入同一嵌入ZZ的功能, 每个对象查询很容易与具有类似语义的相关区域匹配。 此外, SAM- DETR++ 搜索多个具有代表性的密钥点,并利用其特征与增强的表达能力进行语义匹配。 此外, SAM- DETR++ 可以将多种规模特性有效地结合到一个不完全的调和功能上。 SAM- TR++ 的核心是一个插件和游戏模块,用于将查询和编码图像特性植入同一功能嵌入Z的功能,每个对象查询很容易与相关区域相匹配。 此外, SAM- DETR++ 搜索多个具有代表性的关键点, 利用它们的特性与增强的演示能力匹配。 SAM- DETR++++, 在设计中, SAM- 测试S- demal- destal- destal dreal destalation Settilation Sy- dem- dem- 和 Sam- dregillation Sam- dregillation SAM- 。

0
下载
关闭预览

相关内容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:计算机性能建模、测量和评估国际研讨会。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/conf/performance/
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员