The electricity sector transition requires substantial increases in residential demand response capacity, yet Home Energy Management Systems (HEMS) adoption remains limited by user interaction barriers requiring translation of everyday preferences into technical parameters. While large language models have been applied to energy systems as code generators and parameter extractors, no existing implementation deploys LLMs as autonomous coordinators managing the complete workflow from natural language input to multi-appliance scheduling. This paper presents an agentic AI HEMS where LLMs autonomously coordinate multi-appliance scheduling from natural language requests to device control, achieving optimal scheduling without example demonstrations. A hierarchical architecture combining one orchestrator with three specialist agents uses the ReAct pattern for iterative reasoning, enabling dynamic coordination without hardcoded workflows while integrating Google Calendar for context-aware deadline extraction. Evaluation across three open-source models using real Austrian day-ahead electricity prices reveals substantial capability differences. Llama-3.3-70B successfully coordinates all appliances across all scenarios to match cost-optimal benchmarks computed via mixed-integer linear programming, while other models achieve perfect single-appliance performance but struggle to coordinate all appliances simultaneously. Progressive prompt engineering experiments demonstrate that analytical query handling without explicit guidance remains unreliable despite models' general reasoning capabilities. We open-source the complete system including orchestration logic, agent prompts, tools, and web interfaces to enable reproducibility, extension, and future research.
翻译:电力行业转型需要大幅提升住宅需求响应能力,然而家庭能源管理系统(HEMS)的采用仍受限于用户交互障碍,这些障碍需要将日常偏好转化为技术参数。尽管大语言模型已作为代码生成器和参数提取器应用于能源系统,但现有实现尚未将LLM部署为能够管理从自然语言输入到多设备调度完整工作流的自主协调器。本文提出一种代理式AI HEMS,其中LLM能够从自然语言请求自主协调多设备调度直至设备控制,无需示例演示即可实现最优调度。该架构采用分层设计,结合一个协调器与三个专业代理,运用ReAct模式进行迭代推理,在集成Google日历以实现情境感知截止时间提取的同时,支持动态协调而无需硬编码工作流。基于奥地利真实日前电价对三个开源模型的评估揭示了显著的能力差异:Llama-3.3-70B在所有场景中成功协调所有设备,达到通过混合整数线性规划计算出的成本最优基准,而其他模型虽能实现完美的单设备性能,却难以同时协调所有设备。渐进式提示工程实验表明,尽管模型具备通用推理能力,但在无明确指导的情况下处理分析性查询仍不可靠。我们开源了完整系统,包括协调逻辑、代理提示、工具和Web界面,以支持可复现性、扩展和未来研究。