Generating professional financial reports is a labor-intensive and intellectually demanding process that current AI systems struggle to fully automate. To address this challenge, we introduce FinSight (Financial InSight), a novel multi agent framework for producing high-quality, multimodal financial reports. The foundation of FinSight is the Code Agent with Variable Memory (CAVM) architecture, which unifies external data, designed tools, and agents into a programmable variable space, enabling flexible data collection, analysis and report generation through executable code. To ensure professional-grade visualization, we propose an Iterative Vision-Enhanced Mechanism that progressively refines raw visual outputs into polished financial charts. Furthermore, a two stage Writing Framework expands concise Chain-of-Analysis segments into coherent, citation-aware, and multimodal reports, ensuring both analytical depth and structural consistency. Experiments on various company and industry-level tasks demonstrate that FinSight significantly outperforms all baselines, including leading deep research systems in terms of factual accuracy, analytical depth, and presentation quality, demonstrating a clear path toward generating reports that approach human-expert quality.
翻译:生成专业金融报告是一个劳动密集且智力要求高的过程,当前的人工智能系统难以完全实现自动化。为应对这一挑战,我们提出了FinSight(金融洞察),一种用于生成高质量多模态金融报告的新型多智能体框架。FinSight的基础是带可变记忆的代码智能体架构,该架构将外部数据、设计工具和智能体统一到一个可编程变量空间中,通过可执行代码实现灵活的数据收集、分析和报告生成。为确保专业级可视化效果,我们提出了一种迭代视觉增强机制,将原始视觉输出逐步优化为精炼的金融图表。此外,一个两阶段写作框架将简洁的分析链片段扩展为连贯、引用感知且多模态的报告,确保了分析的深度和结构的一致性。在各类公司和行业级任务上的实验表明,FinSight在事实准确性、分析深度和呈现质量方面均显著优于所有基线系统,包括领先的深度研究系统,这展示了生成接近人类专家水平报告的清晰路径。