Understanding objects is a central building block of artificial intelligence, especially for embodied AI. Even though object recognition excels with deep learning, current machines still struggle to learn higher-level knowledge, e.g., what attributes an object has, and what can we do with an object. In this work, we propose a challenging Object Concept Learning (OCL) task to push the envelope of object understanding. It requires machines to reason out object affordances and simultaneously give the reason: what attributes make an object possesses these affordances. To support OCL, we build a densely annotated knowledge base including extensive labels for three levels of object concept (category, attribute, affordance), and the causal relations of three levels. By analyzing the causal structure of OCL, we present a baseline, Object Concept Reasoning Network (OCRN). It leverages causal intervention and concept instantiation to infer the three levels following their causal relations. In experiments, OCRN effectively infers the object knowledge while following the causalities well. Our data and code are available at https://mvig-rhos.com/ocl.
翻译:理解物体是人造智能的核心组成部分, 特别是体现的 AI 。 尽管对象识别优于深层次的学习, 当前的机器仍然在努力学习更高层次的知识, 例如, 物体的属性, 以及我们能做什么。 在这项工作中, 我们提议了一个具有挑战性的物体概念学习(OCL) 任务, 以推进物体理解的包体。 它要求机器解释物体的承受能力, 同时给出理由: 是什么属性使物体拥有这些负担能力。 支持 OCL, 我们建立了一个密集的附加说明的知识库, 包括三个层次物体概念( 类别、 属性、 负担能力) 的广泛标签, 以及三个层次的因果关系。 我们通过分析 OCL 的因果结构, 我们提出了一个基准、 目标概念理由网络(OCRN ) 。 它利用因果干预和概念的即时推导引出其因果关系的三个层次 。 在实验中, OCRN 有效地推断物体拥有这些负担能力。 为了支持OCL, 我们的数据和代码可以在 https://mvig-rhos.com/ ocl 上查阅 。