This paper considers the problem of obtaining bounded time-average expected queue sizes in a single-queue system with a partial-feedback structure. Time is slotted; in slot $t$ the transmitter chooses a rate $V(t)$ from a continuous interval. Transmission succeeds if and only if $V(t)\le C(t)$, where channel capacities $\{C(t)\}$ and arrivals are i.i.d. draws from fixed but unknown distributions. The transmitter observes only binary acknowledgments (ACK/NACK) indicating success or failure. Let $\varepsilon>0$ denote a sufficiently small lower bound on the slack between the arrival rate and the capacity region. We propose a phased algorithm that progressively refines a discretization of the uncountable infinite rate space and, without knowledge of $\varepsilon$, achieves a $\mathcal{O}\!\big(\log^{3.5}(1/\varepsilon)/\varepsilon^{3}\big)$ time-average expected queue size uniformly over the horizon. We also prove a converse result showing that for any rate-selection algorithm, regardless of whether $\varepsilon$ is known, there exists an environment in which the worst-case time-average expected queue size is $Ω(1/\varepsilon^{2})$. Thus, while a gap remains in the setting without knowledge of $\varepsilon$, we show that if $\varepsilon$ is known, a simple single-stage UCB type policy with a fixed discretization of the rate space achieves $\mathcal{O}\!\big(\log(1/\varepsilon)/\varepsilon^{2}\big)$, matching the converse up to logarithmic factors.
翻译:本文研究在具有部分反馈结构的单队列系统中获得有界时间平均期望队列大小的问题。时间被划分为时隙;在第 $t$ 个时隙,发送方从连续区间中选择一个速率 $V(t)$。当且仅当 $V(t)\\le C(t)$ 时传输成功,其中信道容量 $\\{C(t)\\}$ 与到达过程均为来自固定但未知分布的独立同分布抽样。发送方仅观测指示成功或失败的二元确认信号(ACK/NACK)。令 $\\varepsilon>0$ 表示到达速率与容量区域之间间隙的充分小下界。我们提出一种分阶段算法,逐步细化不可数无限速率空间的离散化,在未知 $\\varepsilon$ 的情况下,在整个时间范围内一致地实现 $\\mathcal{O}\\!\\big(\\log^{3.5}(1/\\varepsilon)/\\varepsilon^{3}\\big)$ 的时间平均期望队列大小。我们还证明了一个逆命题:对于任意速率选择算法,无论是否已知 $\\varepsilon$,都存在一个环境使得最坏情况时间平均期望队列大小为 $\\Omega(1/\\varepsilon^{2})$。因此,虽然在未知 $\\varepsilon$ 的设置中仍存在理论间隙,但我们证明若已知 $\\varepsilon$,采用固定速率空间离散化的简单单阶段UCB类策略可实现 $\\mathcal{O}\\!\\big(\\log(1/\\varepsilon)/\\varepsilon^{2}\\big)$,与逆命题结果在对数因子内匹配。