The UNet-enhanced Fourier Neural Operator (UFNO) extends the Fourier Neural Operator (FNO) by incorporating a parallel UNet pathway, enabling the retention of both high- and low-frequency components. While UFNO improves predictive accuracy over FNO, it inefficiently treats scalar inputs (e.g., temperature, injection rate) as spatially distributed fields by duplicating their values across the domain. This forces the model to process redundant constant signals within the frequency domain. Additionally, its standard loss function does not account for spatial variations in error sensitivity, limiting performance in regions of high physical importance. We introduce UFNO-FiLM, an enhanced architecture that incorporates two key innovations. First, we decouple scalar inputs from spatial features using a Feature-wise Linear Modulation (FiLM) layer, allowing the model to modulate spatial feature maps without introducing constant signals into the Fourier transform. Second, we employ a spatially weighted loss function that prioritizes learning in critical regions. Our experiments on subsurface multiphase flow demonstrate a 21\% reduction in gas saturation Mean Absolute Error (MAE) compared to UFNO, highlighting the effectiveness of our approach in improving predictive accuracy.


翻译:UNet增强型傅里叶神经算子(UFNO)通过引入并行UNet路径扩展了傅里叶神经算子(FNO),使其能够同时保留高频与低频分量。尽管UFNO相比FNO提升了预测精度,但其低效地将标量输入(如温度、注入速率)作为空间分布场处理,通过在计算域内复制数值实现。这迫使模型在频域内处理冗余的恒定信号。此外,其标准损失函数未考虑误差敏感度的空间变化,限制了在高物理重要性区域的性能表现。本文提出UFNO-FiLM,一种融合两项关键创新的增强架构。首先,我们通过特征线性调制(FiLM)层将标量输入与空间特征解耦,使模型能够调制空间特征图,同时避免将恒定信号引入傅里叶变换。其次,我们采用空间加权损失函数,以优先学习关键区域的特征。在地下多相流实验中的结果表明,相比UFNO,气体饱和度平均绝对误差(MAE)降低了21%,凸显了本方法在提升预测精度方面的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员