In this position paper, we discuss the merits of simulating privacy dynamics in recommender systems. We study this issue at hand from two perspectives: Firstly, we present a conceptual approach to integrate privacy into recommender system simulations, whose key elements are privacy agents. These agents can enhance users' profiles with different privacy preferences, e.g., their inclination to disclose data to the recommender system. Plus, they can protect users' privacy by guarding all actions that could be a threat to privacy. For example, agents can prohibit a user's privacy-threatening actions or apply privacy-enhancing techniques, e.g., Differential Privacy, to make actions less threatening. Secondly, we identify three critical topics for future research in privacy-aware recommender system simulations: (i) How could we model users' privacy preferences and protect users from performing any privacy-threatening actions? (ii) To what extent do privacy agents modify the users' document preferences? (iii) How do privacy preferences and privacy protections impact recommendations and privacy of others? Our conceptual privacy-aware simulation approach makes it possible to investigate the impact of privacy preferences and privacy protection on the micro-level, i.e., a single user, but also on the macro-level, i.e., all recommender system users. With this work, we hope to present perspectives on how privacy-aware simulations could be realized, such that they enable researchers to study the dynamics of privacy within a recommender system.


翻译:在这份立场文件中,我们讨论了在建议者系统中模拟隐私动态的好处。我们从两个角度研究这一问题:首先,我们提出将隐私纳入建议者系统模拟的概念方法,其关键要素是隐私代理。这些代理者可以以不同的隐私偏好加强用户概况,例如他们向建议者系统披露数据的倾向。此外,他们可以通过保护可能对隐私构成威胁的所有行动来保护用户隐私。例如,代理者可以禁止用户的隐私威胁行动,或者采用增强隐私的技术,例如差异隐私,以减少行动的威胁。第二,我们为未来对隐私意识建议者系统模拟的研究确定了三个关键议题:(一) 我们如何以不同隐私偏好模式来模拟用户的隐私,保护用户不从事任何威胁隐私的行动? (二) 隐私代理者在多大程度上会改变用户的文件偏好? (三) 隐私偏好和隐私保护如何影响他人的建议和隐私?我们的概念隐私认知模拟方法使得有可能调查隐私偏好隐私和保护对微观系统的影响,也建议了当前系统内部的用户视角。

0
下载
关闭预览

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Privacy-Preserving News Recommendation Model Learning
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员