Computational cytology is a critical, rapid-developing, yet challenging topic in the field of medical image computing which analyzes the digitized cytology image by computer-aided technologies for cancer screening. Recently, an increasing number of deep learning (DL) algorithms have made significant progress in medical image analysis, leading to the boosting publications of cytological studies. To investigate the advanced methods and comprehensive applications, we survey more than 120 publications of DL-based cytology image analysis in this article. We first introduce various deep learning methods, including fully supervised, weakly supervised, unsupervised, and transfer learning. Then, we systematically summarize the public datasets, evaluation metrics, versatile cytology image analysis applications including classification, detection, segmentation, and other related tasks. Finally, we discuss current challenges and potential research directions of computational cytology.
翻译:在医学图象计算领域,计算细胞学是一个关键、快速发展但又具有挑战性的专题,通过计算机辅助癌症筛查技术分析数字化细胞学图象。最近,越来越多的深度学习算法在医学图象分析方面取得了显著进展,从而推动了细胞学研究出版物的出版。为了调查本篇文章中的先进方法和综合应用,我们调查了120多份基于DL的细胞学图象分析出版物。我们首先引入了各种深层次的学习方法,包括充分监管、监管薄弱、不受监督和转移学习。然后,我们系统地总结了公共数据集、评价指标、多功能细胞学图象分析应用,包括分类、检测、分解和其他相关任务。最后,我们讨论了目前的挑战以及计算细胞学的潜在研究方向。