Prediction algorithms assign numbers to individuals that are popularly understood as individual "probabilities" -- what is the probability of 5-year survival after cancer diagnosis? -- and which increasingly form the basis for life-altering decisions. Drawing on an understanding of computational indistinguishability developed in complexity theory and cryptography, we introduce Outcome Indistinguishability. Predictors that are Outcome Indistinguishable yield a generative model for outcomes that cannot be efficiently refuted on the basis of the real-life observations produced by Nature. We investigate a hierarchy of Outcome Indistinguishability definitions, whose stringency increases with the degree to which distinguishers may access the predictor in question. Our findings reveal that Outcome Indistinguishability behaves qualitatively differently than previously studied notions of indistinguishability. First, we provide constructions at all levels of the hierarchy. Then, leveraging recently-developed machinery for proving average-case fine-grained hardness, we obtain lower bounds on the complexity of the more stringent forms of Outcome Indistinguishability. This hardness result provides the first scientific grounds for the political argument that, when inspecting algorithmic risk prediction instruments, auditors should be granted oracle access to the algorithm, not simply historical predictions.
翻译:预测算法将数字分配给被普遍理解为个体“概率”的个人 -- -- 癌症诊断后5年存活的可能性是什么? -- -- 并且日益成为改变生命决定的基础。我们根据对复杂理论和加密法中计算不可分性的理解,引入了“结果不可分性”。“结果不可分性”的预测人产生了无法根据自然产生的真实生活观察而有效反驳的结果的基因化模型。我们调查了“结果不可分性”定义的等级,其严格性随着区别者接触有关预测者的程度而增加。我们的调查结果显示,“结果不可分性”在性质上不同于先前研究的不可分性概念。首先,我们提供各级层次的构建。然后,利用最近开发的机器来证明普通微小的硬性,我们在更严格的成果不可分性定义形式的复杂性上得到了较低的约束。这种坚固性的结果增加了区别性,其程度与区别者可以在多大程度上接触有关预测。我们发现,“结果不可分性”与先前研究过的不可分性概念在性质上有所不同性概念上是完全不同的。我们提供了初步科学推算法,在对政治风险进行检验时,应该给予历史分析的逻辑。