In this paper we study Butson Hadamard matrices, and codes over finite rings coming from these matrices in logarithmic form, called BH-codes. We introduce a new morphism of Butson Hadamard matrices through a generalized Gray map on the matrices in logarithmic form, which is comparable to the morphism given in a recent note of \'{O} Cath\'{a}in and Swartz. That is, we show how, if given a Butson Hadamard matrix over the $k^{\rm th}$ roots of unity, we can construct a larger Butson matrix over the $\ell^{\rm th}$ roots of unity for any $\ell$ dividing $k$, provided that any prime $p$ dividing $k$ also divides $\ell$. We prove that a $\mathbb{Z}_{p^s}$-additive code with $p$ a prime number is isomorphic as a group to a BH-code over $\mathbb{Z}_{p^s}$ and the image of this BH-code under the Gray map is a BH-code over $\mathbb{Z}_p$ (binary Hadamard code for $p=2$). Further, we investigate the inherent propelinear structure of these codes (and their images) when the Butson matrix is cocyclic. Some structural properties of these codes are studied and examples are provided.
翻译:本文中我们研究了 Butson Hadamard 矩阵, 以及来自这些矩阵的限定环的代码, 以对数制成, 称为 BH 代码。 我们通过在对数制矩阵上的通用灰色地图, 对数制成布森 Hadamard 矩阵的新的形态化布森 Hadamard 矩阵, 与最近注解\\ {O} Cath\\ {a} in 和 Swartz 时的形态化比较。 这就是说, 如果在 $++rm 的对数制成的基数上给出了 Butson Hadamard 矩阵, 我们就可以在 $\ ell\ rm Th- ground 的基数上构建一个更大的布森基数矩阵, 任何美元等于 $kon, 前提是任何美元除以美元计数的基数, 美元。 我们证明, $\\ $\\\\\\\ p\\ p\\\\\\\\\\\\\ texxxxxxxxx 的底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底值, 这些底底底底底底底底底底底底底底底底底底值, 我们。