Inspired by a new feature in 5G NR called bandwidth part (BWP), this paper presents a bandwidth allocation (BA) model that allows one to adapt the bandwidth allocated to users depending on their data rate needs. Specifically, in adaptive BA, a wide bandwidth is divided into chunks of smaller bandwidths and the number of bandwidth chunks allocated to a user depends on its needs or type. Although BWP in 5G NR mandates allocation of a set of contiguous bandwidth chunks, our BA model also allows other assumptions on chunk allocation such as the allocation of any set of bandwidth chunks, as in, e.g., LTE resource allocation, where chunks are selected uniformly at random. The BA model studied here is probabilistic in that the user locations are assumed to form a realization of a Poisson point process and each user decides independently to be of a certain type with some probability. This model allows one to quantify spectrum sharing and service differentiation in this context, namely to predict what performance a user gets depending on its type as well as the overall performance. This is based on exact representations of key performance metrics for each user type, namely its success probability, the meta distribution of its signal-to-interference ratio, and its Shannon throughput. We show that, surprisingly, the higher traffic variability stemming from adaptive BA is beneficial: when comparing two networks using adaptive BA and having the same mean signal and the same mean interference powers, the network with higher traffic variability performs better for all these performance metrics. With respect to Shannon throughput, we observe that our BA model is roughly egalitarian per Hertz and leads to a linear service differentiation in aggregated throughput value.


翻译:本文在5G NR称为带宽部分(BWP)的新特点的启发下,提出一个带宽分配模式(BA)模式,允许根据用户的数据率需求调整分配给用户的带宽。具体地说,在适应性BA中,宽宽带分为小带宽块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块块数,尽管5G NR授权分配一组连带带带宽段块块块块数,但我们BA模型还允许对块分配的其他假设,例如分配任何一组带宽带宽块块(BA)模式(BBA)模式(BA)块块块块块块块块根据用户的数据比例根据他们的数据比例随机选择。这里研究的BAB模型是概率性的,因为用户地点被假定形成一个小带小带宽宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽的带宽带宽带宽的带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽的带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽的带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽的带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽的带宽带宽带宽带宽带宽带宽带宽的带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽的宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽的宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽带宽

0
下载
关闭预览

相关内容

【微软】深度学习推理系统,45页ppt
专知会员服务
36+阅读 · 2021年6月27日
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
49篇ICLR2020高分「图机器学习GML」接受论文及代码
专知会员服务
62+阅读 · 2020年1月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
【微软】深度学习推理系统,45页ppt
专知会员服务
36+阅读 · 2021年6月27日
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
49篇ICLR2020高分「图机器学习GML」接受论文及代码
专知会员服务
62+阅读 · 2020年1月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员