链接预测是图的一项非常基础的任务。在传统路径学习方法的启发下,本文提出了一种通用的、灵活的基于路径的链接预测表示学习框架。具体来说,我们将节点对的表示定义为所有路径表示的广义和,每个路径表示都是路径中各边表示的广义乘积。受求解最短路径问题的Bellman-Ford算法的启发,我们证明了所提出的路径公式可以被广义Bellman-Ford算法有效地求解。为了进一步提高路径表示的能力,我们提出了神经BellmanFord网络(NBFNet),这是一个通用的图神经网络框架,用于解决广义Bellman-Ford算法中使用学习算子的路径表示。NBFNet将广义Bellman-Ford算法参数化,采用3个神经单元,分别对应边界条件、乘法算子和求和算子。NBFNet是非常通用的,涵盖了许多传统的基于路径的方法,并且可以应用于同构图和多关系图(例如,知识图)在转换和归纳设置。在同构图和知识图谱上的实验表明,所提出的NBFNet在转导和归纳设置方面都大大优于现有方法,取得了最新的研究结果。

https://www.zhuanzhi.ai/paper/15b186a8fcbae87c07eef96f6692c300

成为VIP会员查看完整内容
23

相关内容

图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【NeurIPS 2021】学会学习图拓扑
专知会员服务
24+阅读 · 2021年10月22日
专知会员服务
19+阅读 · 2021年9月12日
专知会员服务
16+阅读 · 2021年7月31日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
31+阅读 · 2021年6月24日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
29+阅读 · 2021年5月21日
【NeurIPS 2020】通过双向传播的可扩展图神经网络
专知会员服务
27+阅读 · 2020年11月3日
基于 GNN 的图表示学习
DataFunTalk
9+阅读 · 2020年1月17日
【NeurIPS2019】图变换网络:Graph Transformer Network
超越标准 GNN !DeepMind、谷歌提出图匹配网络| ICML最新论文
黑龙江大学自然语言处理实验室
7+阅读 · 2019年5月7日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
Arxiv
0+阅读 · 2021年12月1日
Arxiv
9+阅读 · 2021年10月26日
Arxiv
8+阅读 · 2018年5月17日
Arxiv
12+阅读 · 2018年1月28日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关VIP内容
【NeurIPS 2021】学会学习图拓扑
专知会员服务
24+阅读 · 2021年10月22日
专知会员服务
19+阅读 · 2021年9月12日
专知会员服务
16+阅读 · 2021年7月31日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
31+阅读 · 2021年6月24日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
29+阅读 · 2021年5月21日
【NeurIPS 2020】通过双向传播的可扩展图神经网络
专知会员服务
27+阅读 · 2020年11月3日
相关资讯
基于 GNN 的图表示学习
DataFunTalk
9+阅读 · 2020年1月17日
【NeurIPS2019】图变换网络:Graph Transformer Network
超越标准 GNN !DeepMind、谷歌提出图匹配网络| ICML最新论文
黑龙江大学自然语言处理实验室
7+阅读 · 2019年5月7日
图上的归纳表示学习
科技创新与创业
23+阅读 · 2017年11月9日
微信扫码咨询专知VIP会员