We develop two distributed downlink resource allocation algorithms for user-centric, cell-free, spatially-distributed, multiple-input multiple-output (MIMO) networks. In such networks, each user is served by a subset of nearby transmitters that we call distributed units or DUs. The operation of the DUs in a region is controlled by a central unit (CU). Our first scheme is implemented at the DUs, while the second is implemented at the CUs controlling these DUs. We define a hybrid quality of service metric that enables distributed optimization of system resources in a proportional fair manner. Specifically, each of our algorithms performs user scheduling, beamforming, and power control while accounting for channel estimation errors. Importantly, our algorithm does not require information exchange amongst DUs (CUs) for the DU-distributed (CU-distributed) system, while also smoothly converging. Our results show that our CU-distributed system provides 1.3- to 1.8-fold network throughput compared to the DU-distributed system, with minor increases in complexity and front-haul load - and substantial gains over benchmark schemes like local zero-forcing. We also analyze the trade-offs provided by the CU-distributed system, hence highlighting the significance of deploying multiple CUs in user-centric cell-free networks.
翻译:我们为用户中心、无细胞、空间分布式、多投入、多产出(MIIMO)网络开发了两种分布式下链资源分配算法。在这样的网络中,每个用户都得到我们称之为分布式单位或贫铀的附近发射机的子集服务。在一个区域,贫铀的运作由一个中央单位(CU)控制。我们的第一个计划是在DUs实施,而第二个计划是在控制这些贫铀的CUs实施。我们定义了一个混合的服务质量衡量法,以便能够以比例公平的方式优化系统资源的分配。具体地说,我们每个算法都进行用户时间安排、进行组合和权力控制,同时核算频道估计错误。重要的是,我们的算法并不要求DU(CU-分配)系统在DU分配(CU-分配)系统上进行信息交流,而第二个计划则是顺利的。我们的CU-分配制度提供了1.3到1.8倍的网络,与DU-分配式系统相比,其复杂性和前置力控制器控制器控制器的配置系统略有增加和前置力控制。我们的算法并不要求DUC- 系统在高的部署型系统上,我们为CUCR- 的交付式的系统提供的交付式的系统。