The I-patch is a multi-sided surface representation, defined as a combination of implicit ribbon and bounding surfaces, whose pairwise intersections determine the natural boundaries of the patch. Our goal is to show how a collection of smoothly connected I-patches can be used to approximate triangular meshes. We start from a coarse, user-defined vertex graph which specifies an initial subdivision of the surface. Based on this, we create ribbons that tightly fit the mesh along its edges in both positional and tangential sense, then we optimize the free parameters of the patch to better approximate the interior. If the surfaces are not sufficiently accurate, the network needs to be refined; here we exploit that the I-patch construction naturally supports T-nodes. We also describe a normalization method that nicely approximates the Euclidean distance field, and can be efficiently evaluated. The capabilities and limitations of the approach are analyzed through several examples.
翻译:I- patch 是一个多面表层代表, 定义为隐含丝带和捆绑表面的组合, 其配对的交叉点决定着补丁的自然边界。 我们的目标是展示如何将连接顺利的 I- patches 集合起来, 以近三角间距 。 我们从粗糙的、 用户定义的顶点图开始, 以指定表面的初始分区 。 基于此, 我们创建丝带, 紧接其边缘的网状, 在位置和正切意义上, 然后我们优化补丁的免费参数, 以更好地接近内部 。 如果表面不够准确, 网络需要精细化 ; 在此我们利用 I- patch 构造自然支持 T 节点 。 我们还描述一种常规化方法, 能够很好地接近 Euclidean 距离场, 并且可以有效评估 。 方法的能力和局限性通过几个例子分析 。