This paper investigates the effectiveness of systematically probing Google Trendsagainst textual translations of visual aspects as exogenous knowledge to predict the sales of brand-new fashion items, where past sales data is not available, but only an image and few metadata are available. In particular, we propose GTM-Transformer, standing for Google Trends Multimodal Transformer, whose encoder works on the representation of the exogenous time series, while the decoder forecasts the sales using the Google Trends encoding, and the available visual and metadata information. Our model works in a non-autoregressive manner, avoiding the compounding effect of the first-step errors. As a second contribution, we present the VISUELLE dataset, which is the first publicly available dataset for the task of new fashion product sales forecasting, containing the sales of 5577 new products sold between 2016-2019, derived from genuine historical data ofNunalie, an Italian fast-fashion company. Our dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state-of-the-art alternatives and numerous baselines, showing that GTM-Transformer is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% WAPE wise, showing the importance of exploiting Google Trends. The code and dataset are both available at https://github.com/HumaticsLAB/GTM-Transformer.
翻译:本文调查了系统地调查谷歌趋势的实效,将视觉内容作为外源知识的外源知识,作为预测品牌新时装项目的销售的外源知识,而过去没有销售数据,但只有图像和很少的元数据。 特别是,我们提议GTM-Transeror, 站在谷歌趋势多模式变异器上, 其编码器用于外源时间序列的表示, 而解码器则使用谷歌趋势编码以及现有的视觉和元数据信息来预测销售情况。 我们的模型以非反向方式工作,避免第一步错误的复合效应。 作为第二稿,我们介绍的是透明VISUELLE数据集,这是用于新时装产品预测任务的第一个公开数据集,包含2016-2019年期间销售的5577个新产品的销售量,来自意大利快车公司Nunalelie的真实历史数据。 我们的数据集配备了产品、元数据、相关销售和相关谷歌趋势的图像。 我们使用VISUELLLE, 来比较我们的方法与州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州