The role of social media in fashion industry has been blooming as the years have continued on. In this work, we investigate sentiment analysis for fashion related posts in social media platforms. There are two main challenges of this task. On the first place, information of different modalities must be jointly considered to make the final predictions. On the second place, some unique fashion related attributes should be taken into account. While most existing works focus on traditional multimodal sentiment analysis, they always fail to exploit the fashion related attributes in this task. We propose a novel framework that jointly leverages the image vision, post text, as well as fashion attribute modality to determine the sentiment category. One characteristic of our model is that it extracts fashion attributes and integrates them with the image vision information for effective representation. Furthermore, it exploits the mutual relationship between the fashion attributes and the post texts via a mutual attention mechanism. Since there is no existing dataset suitable for this task, we prepare a large-scale sentiment analysis dataset of over 12k fashion related social media posts. Extensive experiments are conducted to demonstrate the effectiveness of our model.


翻译:社交媒体在时装产业中的作用随着这些年的继续而蓬勃发展。在这项工作中,我们研究了对社交媒体平台中时装相关职位的情绪分析。 这项任务有两大挑战。 首先,必须共同考虑不同模式的信息,以便做出最终预测。 其次,应当考虑某些独特的时装相关属性。 虽然大多数现有工作都侧重于传统的多式联运情绪分析,但它们总是未能利用这一任务中与时装相关属性。 我们提出了一个新的框架,共同利用图像愿景、邮递文本以及时装属性模式来确定情绪类别。 我们模型的一个特点是,它提取时装属性,并将这些属性与图像愿景信息结合起来,以便进行有效的展示。此外,它利用了时装属性与后文的相互关系,通过一个共同关注机制,我们没有适合这项任务的现有数据集,因此,我们编制了一个12公里以上与时装有关的社交媒体的大规模情绪分析数据集。我们进行了广泛的实验,以展示模型的有效性。

0
下载
关闭预览

相关内容

狭义的情感分析(sentiment analysis)是指利用计算机实现对文本数据的观点、情感、态度、情绪等的分析挖掘。广义的情感分析则包括对图像视频、语音、文本等多模态信息的情感计算。简单地讲,情感分析研究的目标是建立一个有效的分析方法、模型和系统,对输入信息中某个对象分析其持有的情感信息,例如观点倾向、态度、主观观点或喜怒哀乐等情绪表达。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
55+阅读 · 2021年5月10日
自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
23+阅读 · 2020年12月12日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
 【中科院信工所】社交媒体情感分析,40页ppt
专知会员服务
99+阅读 · 2019年12月13日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NAACL-HLT 2019等国际会议信息6条
Call4Papers
4+阅读 · 2018年10月30日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
3+阅读 · 2017年5月14日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NAACL-HLT 2019等国际会议信息6条
Call4Papers
4+阅读 · 2018年10月30日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员