Safe long-term deployment of a fleet of mobile robots requires reliable and secure two-way communication channels between individual robots and remote human operators for supervision and tasking. Existing open-source solutions to this problem degrade in performance in challenging real-world situations such as intermittent and low-bandwidth connectivity, do not provide security control options, and can be computationally expensive on hardware-constrained mobile robot platforms. In this paper, we present Robofleet, a lightweight open-source system which provides inter-robot communication, remote monitoring, and remote tasking for a fleet of ROS-enabled service-mobile robots that is designed with the practical goals of resilience to network variance and security control in mind. Robofleet supports multi-user, multi-robot communication via a central server. This architecture deduplicates network traffic between robots, significantly reducing overall network load when compared with native ROS communication. This server also functions as a single entrypoint into the system, enabling security control and user authentication. Individual robots run the lightweight Robofleet client, which is responsible for exchanging messages with the Robofleet server. It automatically adapts to adverse network conditions through backpressure monitoring as well as topic-level priority control, ensuring that safety-critical messages are successfully transmitted. Finally, the system includes a web-based visualization tool that can be run on any internet-connected, browser-enabled device to monitor and control the fleet. We compare Robofleet to existing methods of robotic communication, and demonstrate that it provides superior resilience to network variance while maintaining performance that exceeds that of widely-used systems.


翻译:移动机器人车队的长期安全部署需要个体机器人和远程人类操作员之间可靠和安全的双向通信渠道,以进行监督和分配任务。 这个问题的现有开放源码解决方案在挑战现实局势(如间歇和低频宽连接)中的表现退化,无法提供安全控制选项,而且可以在硬件限制的移动机器人平台上计算昂贵。 在本文中,我们介绍一个轻巧的开放源系统Robofleet,该系统提供机器人之间的通信、远程监测和远程任务分配,为具有网络差异和安全控制的实际目标的ROS型服务移动机器人车队设计。 Robleot支持多用户和通过中央服务器进行多频宽频宽的通信。这个架构将机器人之间的网络通信变质化,在与本地ROMS通信相比,显著降低整个网络的负荷。这个服务器还可以作为系统的一个单一入口点运作,能够进行安全控制和用户认证。 个体机器人运行着轻量的 Robfleot 服务机器人客户,负责将信息与网络差异和安全控制的实际目标进行互换,我们通过网络服务器系统进行自动调整,同时确保内部服务器的网络操作系统运行。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员