Cognitive Diagnosis Models (CDMs) are a special family of discrete latent variable models widely used in educational, psychological and social sciences. In many applications of CDMs, certain hierarchical structures among the latent attributes are assumed by researchers to characterize their dependence structure. Specifically, a directed acyclic graph is used to specify hierarchical constraints on the allowable configurations of the discrete latent attributes. In this paper, we consider the important yet unaddressed problem of testing the existence of latent hierarchical structures in CDMs. We first introduce the concept of testability of hierarchical structures in CDMs and present sufficient conditions. Then we study the asymptotic behaviors of the likelihood ratio test (LRT) statistic, which is widely used for testing nested models. Due to the irregularity of the problem, the asymptotic distribution of LRT becomes nonstandard and tends to provide unsatisfactory finite sample performance under practical conditions. We provide statistical insights on such failures, and propose to use parametric bootstrap to perform the testing. We also demonstrate the effectiveness and superiority of parametric bootstrap for testing the latent hierarchies over non-parametric bootstrap and the na\"ive Chi-squared test through comprehensive simulations and an educational assessment dataset.


翻译:认知性诊断模型(CDM)是教育、心理和社会科学中广泛使用的离散潜伏变量模型的特殊组合。在CDM的许多应用中,研究人员假定潜在属性中的某些等级结构具有其依赖性结构的特点。具体地说,使用定向环形图来说明离散潜在属性允许配置的等级限制。在本文中,我们考虑了在测试清洁发展机制中存在潜伏等级结构方面存在的重要但尚未解决的问题。我们首先引入了清洁发展机制中等级结构的可测试性概念,并提出了充分的条件。然后,我们研究了概率比率测试(LRT)统计数据的无症状行为,该统计数据被广泛用于测试嵌套模型。由于问题不规范,LRT的无症状分布变得不标准,往往在实际条件下提供不令人满意的抽样性能。我们对这种缺陷提供统计洞察,并提议使用等分制靴来进行测试。我们还展示了用于测试非对应制靴室和全面测试的顶部测试的潜伏性定型定型靴带的有效性和优越性。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
【干货书】数据科学家统计实战,附代码与409页pdf
专知会员服务
59+阅读 · 2020年11月6日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
已删除
将门创投
7+阅读 · 2019年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月30日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员