We study the expressivity and the model checking problem of linear temporal logic with team semantics (TeamLTL). In contrast to LTL, TeamLTL is capable of defining hyperproperties, i.e., properties which relate multiple execution traces. Logics for hyperproperties have so far been mostly obtained by extending temporal logics like LTL and QPTL with trace quantification, resulting in HyperLTL and HyperQPTL. We study the expressivity of TeamLTL and its extensions in comparison to HyperLTL and HyperQPTL. By doing so we obtain a number of model checking results for TeamLTL and identify its undecidability frontier. The two types of logics follow a fundamentally different approach to hyperproperties and are of incomparable expressivity. We establish that the universally quantified fragment of HyperLTL subsumes the so-called k-coherent fragment of TeamLTL with contradictory negation. This also implies that the model checking problem is decidable for the fragment. We show decidability of model checking of the so-called left-flat fragment of TeamLTL with downward-closed generalised atoms and Boolean disjunction via a translation to a decidable fragment of HyperQPTL. Finally, we show that the model checking problem of TeamLTL with Boolean disjunction and inclusion atoms is undecidable.
翻译:我们用团队语义学(TeamLTL)研究线性时间逻辑的表达性和模型检查问题。 与 LTL 相比, TeamLTLL能够定义超不合理性, 即与多重执行痕迹有关的属性。 超不合理性逻辑迄今为止大多是通过延长LTL和QPTL等时间逻辑并进行追踪量化而获得的, 结果是超LTL和超QPTL。 我们研究TeetL的表达性和扩展性, 与超LTL和超QPTL比较。 通过这样做, 我们获得了TeetLT组的一些示范检查结果, 并确定了其不可降解的边界。 两种逻辑对超不合理性特征的逻辑采用了根本不同的方法, 也就是超常性逻辑的逻辑, 和QTephleTL的量化的碎片, 与所谓的K-CLTT组的K相矛盾。 这还意味着对碎片的模型核对问题是可以辨别的。 我们在TeedLTULL的所谓“不折叠式”的模型检查模型与TULTULTL最后向下校验, 显示我们的“ ” 和“不折叠”的“不折叠的“ ” 问题” 。