Entity resolution (probabilistic record linkage, deduplication) is a key step in scientific analysis and data science pipelines involving multiple data sources. The objective of entity resolution is to link records without common unique identifiers that refer to the same entity (e.g., person, company). However, without identifiers, researchers need to specify which records to compare in order to calculate matching probability and reduce computational complexity. One solution is to deterministically block records based on some common variables, such as names, dates of birth or sex or use phonetic algorithms. However, this approach assumes that these variables are free of errors and completely observed, which is often not the case. To address this challenge, we have developed a Python package, BlockingPy, which uses blocking using modern approximate nearest neighbour search and graph algorithms to reduce the number of comparisons. The package supports both CPU and GPU execution. In this paper, we present the design of the package, its functionalities and two case studies related to official statistics. The presented software will be useful for researchers interested in linking data from various sources.
翻译:暂无翻译