One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero. The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables called parameters. We revisit the parameter synthesis problem for such automata. That is, we ask whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some omega-regular property. The problem has been shown to be encodable in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment, called EARPAD, is unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable restriction of EARPAD, (ii) we prove the synthesis problem is decidable in general and in N2EXP for several fixed omega-regular properties. Finally, (iii) we give a polynomial-space algorithm for the special case of the problem where parameters can only be used in tests, and not updates, of the counter.
翻译:使用一个计数器,其价值可大于非负负整数,并测试为零的典型限定状态自动自制数据获得。 适用于该计数器的更新和测试可以通过引入一套叫作参数的整数价值变量进一步进行参数化。 我们重新审视了这种自动成形数据的参数合成问题。 也就是说, 我们询问是否对参数进行了估值, 使自动成形器的所有无限运行都满足了某些奥美加- 普通属性。 问题已被证明可以在限量的Presburger算术单向化碎片中找到, 并且可以分辨。 在这项工作中, (一) 我们争辩说, 所谓的EARPAD(简称EARPAD) 所述碎片是无法降解的。 然而, 我们仔细地将问题重新编码成EARPAD( EAD) 的可分解的限制, (二) 我们证明合成问题在一般情况下和在N2EXP( N2EXP) 中可以分解。 最后, (三) 我们为问题的特殊案例给出一个多式空间算法, 无法在测试中使用的参数和反向。