We study the Non-Homogeneous Sequential Hypothesis Testing (NHSHT), where a single active Decision-Maker (DM) selects actions with heterogeneous positive costs to identify the true hypothesis under an average error constraint \(\delta\), while minimizing expected total cost paid. Under standard arguments, we show that the objective decomposes into the product of the mean number of samples and the mean per-action cost induced by the policy. This leads to a key design principle: one should optimize the ratio of expectations (expected information gain per expected cost) rather than the expectation of per-step information-per-cost ("bit-per-buck"), which can be suboptimal. We adapt the Chernoff scheme to NHSHT, preserving its classical \(\log 1/\delta\) scaling. In simulations, the adapted scheme reduces mean cost by up to 50\% relative to the classic Chernoff policy and by up to 90\% relative to the naive bit-per-buck heuristic.


翻译:本文研究非均匀序贯假设检验问题,其中单个主动决策者通过选择具有异质正代价的动作,在平均误差约束\(\delta\)下识别真实假设,同时最小化预期总代价。通过标准论证,我们证明该目标可分解为策略诱导的样本均值与单动作代价均值的乘积。这引出一个关键设计原则:应优化期望比值(预期信息增益与预期代价之比),而非优化单步信息-代价比("每比特成本")的期望值,后者可能产生次优解。我们将Chernoff方案适配至非均匀序贯假设检验框架,保持其经典的\(\log 1/\delta\)缩放特性。仿真结果表明,改进方案相较于经典Chernoff策略平均代价降低最高达50%,相较于朴素每比特成本启发式方法降低最高达90%。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2023年12月4日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员