This work investigates the problem of demand privacy against colluding users for shared-link coded caching systems, where no subset of users can learn any information about the demands of the remaining users. The notion of privacy used here is stronger than similar notions adopted in past work and is motivated by the practical need to insure privacy regardless of the file distribution. Two scenarios are considered: Single File Retrieval (SFR) and Linear Function Retrieval (LFR), where in the latter case each user demands an arbitrary linear combination of the files at the server. The main contributions of this paper are a novel achievable scheme for LFR, referred as privacy key scheme, and a new information theoretic converse bound for SFR. Clearly, being SFR a special case of LFR, an achievable scheme for LFR works for SFR as well, and a converse for SFR is a valid converse for LFR as well. By comparing the performance of the achievable scheme with the converse bound derived in this paper (for the small cache size regime) and existing converse bounds without privacy constraints (in the remaining memory regime), the communication load of the privacy key scheme turns out to be optimal to within a constant multiplicative gap in all parameter regimes. Numerical results show that the new privacy key scheme outperforms in some regime known schemes based on the idea of virtual users, which also satisfy the stronger notion of user privacy against colluding users adopted here. Moreover, the privacy key scheme enjoys much lower subpacketization than known schemes based on virtual users.


翻译:这项工作调查了对共享链接编码缓存系统串通用户的需求隐私问题, 用户中没有一个子集能够了解关于剩余用户需求的任何信息。 这里使用的隐私概念比过去工作中采用的类似概念更强, 其动机是实际需要确保隐私, 不论文件的分发情况如何。 考虑了两种设想: 单一文件检索val( SFR) 和 Linearinear 函数检索val (LFR) 。 在后一种情况下, 每个用户都要求将服务器的文档任意线性组合。 本文的主要贡献是对LFR 来说一个新颖的可实现方案, 被称为隐私关键方案, 以及一个新的信息对 SFR 的理论。 显然, SRFR 是LFR 的特殊案例, 一个LFR 的可实现计划, 一个为SFR( LFR) 和 SFR( Linearneal Don) 的可实现方案。 通过将可实现计划的业绩与本文中得出的相近线性组合( 小缓存系统) 和现有的反向无隐私限制的虚拟虚拟机制( ), 最接近的用户的内存式关键机制, 最深的通信系统 将已知的关键系统 向已知的关键系统 向已知的关键系统 显示一个已知的关键系统 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
51+阅读 · 2020年12月14日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
167+阅读 · 2020年4月26日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月20日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月4日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
167+阅读 · 2020年4月26日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月20日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员