In the problem of cache-aided multiuser private information retrieval (MuPIR), a set of $K_{\rm u}$ cache-equipped users wish to privately download a set of messages from $N$ distributed databases each holding a library of $K$ messages. The system works in two phases: {\it cache placement (prefetching) phase} in which the users fill up their cache memory, and {\it private delivery phase} in which the users' demands are revealed and they download an answer from each database so that the their desired messages can be recovered while each individual database learns nothing about the identities of the requested messages. The goal is to design the placement and the private delivery phases such that the \emph{load}, which is defined as the total number of downloaded bits normalized by the message size, is minimized given any user memory size. This paper considers the MuPIR problem with two messages, arbitrary number of users and databases where uncoded prefetching is assumed, i.e., the users directly copy some bits from the library as their cached contents. We propose a novel MuPIR scheme inspired by the Maddah-Ali and Niesen (MAN) coded caching scheme. The proposed scheme achieves lower load than any existing schemes, especially the product design (PD), and is shown to be optimal within a factor of $8$ in general and exactly optimal at very high or low memory regime.
翻译:在缓存辅助多用户私人信息检索(MuPIR)问题中,一套由 $@rm u $ cassed 装备齐备的用户希望私下下载一套由持有$K美元信息库的美元分布式数据库发送的信息。该系统分两个阶段运作: ~ 它缓存放置(预发) 阶段 ; 用户填充缓存存储器, 和 } 用户下载每个数据库的回复, 以便每个数据库对所请求信息的身份一无所知, 从而能够收回他们想要的信息。 目标是设计放置和私人发送阶段, 如 = emph{ load}, 定义为按信息大小正常化的下载位数的总数, 以任何用户的存储大小为最小。 本文认为, MuPIR 问题有两个信息, 用户和数据库的任意数量, 假设未编码的预展延的用户和数据库, 即用户直接复制图书馆的一些部分内容, 作为其缓存内容。 我们提议了一个新的 MuPIR 计划,, 而不是一个最优的系统, 。