Secret sharing schemes based on the idea of hidden multipliers in encryption are proposed. As a platform, one can use both multiplicative groups of finite fields and groups of invertible elements of commutative rings, in particular, multiplicative groups of residue rings. We propose two versions of the secret sharing scheme and a version of ($k,n$)-thrested scheme. For a given $n$, the dealer can choose any $k.$ The main feature of the proposed schemes is that the shares of secrets are distributed once and can be used multiple times. This property distinguishes the proposed schemes from the secret sharing schemes known in the literature. The proposed schemes are semantically secure. The same message can be transmitted in different forms. From the transferred secret $c$ it is impossible to determine which of the two given secrets $m_1$ or $m_2$ was transferred. For concreteness, we give some numerical examples.
翻译:基于加密中隐蔽乘数概念的秘密共享计划被提出来。作为一个平台,人们可以同时使用有限字段的倍数组合和流通环中不可倒置的元素组合,特别是多复制的残余环组合。我们提出两个版本的秘密共享计划和一个版本的(k,n$)破碎计划。对于给定的美元,交易商可以选择任何美元。提议的计划的主要特征是,秘密的共享分配一次,可以多次使用。这一属性将拟议的计划与文献中已知的秘密共享计划区分开来。提议的计划具有内在安全性。相同的信息可以以不同的形式传递。从转移的秘密中,无法确定哪两种给定的秘密转移了$1美元或$2美元。关于具体性,我们举几个数字例子。