Deep reinforcement learning (DRL) has recently been used to perform efficient resource allocation in wireless communications. In this paper, the vulnerabilities of such DRL agents to adversarial attacks is studied. In particular, we consider multiple DRL agents that perform both dynamic channel access and power control in wireless interference channels. For these victim DRL agents, we design a jammer, which is also a DRL agent. We propose an adversarial jamming attack scheme that utilizes a listening phase and significantly degrades the users' sum rate. Subsequently, we develop an ensemble policy defense strategy against such a jamming attacker by reloading models (saved during retraining) that have minimum transition correlation.


翻译:深层强化学习( DRL) 最近被用于在无线通信中高效分配资源。 在本文中, 研究了这种DRL代理器在对抗性攻击中的脆弱性。 特别是, 我们考虑在无线干扰频道中执行动态通道接入和电源控制的多个DRL代理器。 对于这些受害人的DRL代理器, 我们设计了一个干扰器, 这也是DRL代理器。 我们提出一个对抗性干扰袭击计划, 利用监听阶段, 并显著降低用户的总和率。 随后, 我们制定了一个联合政策防御战略, 通过重新加载具有最小过渡相关性的模型( 在再培训期间保存 ) 来对付这种干扰攻击器。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年6月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2018年12月26日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年6月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员