In this paper, we study the non-monotone adaptive submodular maximization problem subject to a knapsack constraint. The input of our problem is a set of items, where each item has a particular state drawn from a known prior distribution. However, the state of an item is initially unknown, one must select an item in order to reveal the state of that item. Moreover, each item has a fixed cost. There is a utility function which is defined over items and states. Our objective is to sequentially select a group of items to maximize the expected utility subject to a knapsack constraint. Although the cardinality-constrained, as well as the more general matroid-constrained, adaptive submodular maximization has been well studied in the literature, whether there exists a constant approximation solution for the knapsack-constrained adaptive submodular maximization problem remains an open problem. We fill this gap by proposing the first constant approximation solution. In particular, our main contribution is to develop a sampling-based randomized algorithm that achieves a $\frac{1}{10}$ approximation for maximizing an adaptive submodular function subject to a knapsack constraint.


翻译:在本文中,我们研究受 knapsack 限制的非分子适应性子模块最大化问题。 我们问题的投入是一组项目, 其中每个项目都有从已知的先前分布中提取的特定状态。 但是, 最初一个项目的状况未知, 必须选择一个项目以显示该项目的状况。 此外, 每个项目都有固定的成本。 由各个项目和状态来定义一个实用功能。 我们的目标是按顺序选择一组项目, 以最大限度地实现受 knapsack 限制的预期效用。 尽管文献中已经很好地研究了基数限制的, 以及更一般的类固醇控制、 适应性亚模块最大化, 但是对于受 knapsack 限制的适应性亚模块最大化问题, 是否存在一个恒定的近似解决方案。 我们通过提出第一个恒定近效解决方案来填补这一缺口。 特别是, 我们的主要贡献是开发一种基于取样的随机算法, 以达到 $\ rapsack { { 10} 近似值, 以最大限度地实现受 knapsack 约束的适应性子模块功能。

0
下载
关闭预览

相关内容

专知会员服务
92+阅读 · 2021年6月3日
专知会员服务
123+阅读 · 2020年9月8日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
【康奈尔大学】度量数据粒度,Measuring Dataset Granularity
专知会员服务
12+阅读 · 2019年12月27日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
0+阅读 · 2021年6月2日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员