Registration of brain MRI images requires to solve a deformation field, which is extremely difficult in aligning intricate brain tissues, e.g., subcortical nuclei, etc. Existing efforts resort to decomposing the target deformation field into intermediate sub-fields with either tiny motions, i.e., progressive registration stage by stage, or lower resolutions, i.e., coarse-to-fine estimation of the full-size deformation field. In this paper, we argue that those efforts are not mutually exclusive, and propose a unified framework for robust brain MRI registration in both progressive and coarse-to-fine manners simultaneously. Specifically, building on a dual-encoder U-Net, the fixed-moving MRI pair is encoded and decoded into multi-scale deformation sub-fields from coarse to fine. Each decoding block contains two proposed novel modules: i) in Deformation Field Integration (DFI), a single integrated sub-field is calculated, warping by which is equivalent to warping progressively by sub-fields from all previous decoding blocks, and ii) in Non-rigid Feature Fusion (NFF), features of the fixed-moving pair are aligned by DFI-integrated sub-field, and then fused to predict a finer sub-field. Leveraging both DFI and NFF, the target deformation field is factorized into multi-scale sub-fields, where the coarser fields alleviate the estimate of a finer one and the finer field learns to make up those misalignments insolvable by previous coarser ones. The extensive and comprehensive experimental results on both private and public datasets demonstrate a superior registration performance of brain MRI images over progressive registration only and coarse-to-fine estimation only, with an increase by at most 10% in the average Dice.
翻译:大脑 MRI 图像的注册需要解决一个变形字段, 这在将复杂的大脑组织( 如亚皮层核等) 同步化方面是极其困难的。 现有的努力采用将目标变形字段分解成中间子字段的方法, 要么是小动作, 即, 一步一步的递进登记阶段, 要么是低分辨率, 即, 对全尺寸变形字段的粗略至线性估计。 在本文中, 我们争辩说, 这些努力并不是相互排斥的, 并提议一个统一框架, 使大脑变形组织同时以渐进和粗皮至纤维两种方式进行合并。 具体地说, 在双编码 U- Net 上, 固定的 MRI 对目标字段进行拆分解, 将固定的 MRI 编解成多尺度的子字段。 每个解析区包含两个拟议的新模块: i) 在变形字段整合(DFII) 中, 一个单一的集成子字段( ), 将一个可扭曲的子字段( ) 的精细微的Nart- 和粗皮层的内层化 软质化的内, 软化的内, 一个OFIFIFIFAL 的变的变的机的变的功能的功能的功能的功能的功能的运行的运行的功能的功能的功能, 的功能的功能的功能的功能的功能的功能的功能,, 的二进化,, 的二氧化的递进化的功能的功能的递进化的递进进进化,, 的递进化的硬化的递进进进化的硬化的硬化的硬化的硬化的硬化的硬化的硬化的硬化的功能的功能的功能的功能的递化的递化的硬的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的功能的变化的变化的变化的变化的变化的变化的变化的变化的变化的变化的变化的变化的变化的变化的变化的变化的变化的变化的变化的