Artificial intelligence (AI) in healthcare has significantly advanced intelligent medical treatment. However, traditional intelligent healthcare is limited by static data and unified standards, preventing full integration with individual situations and other challenges. Hence, a more professional and detailed intelligent healthcare method is needed for development. To this end, we propose an innovative framework named Heath-LLM, which combines large-scale feature extraction and medical knowledge trade-off scoring. Compared to traditional health management methods, our system has three main advantages. First, our system integrates health reports into a large model to provide detailed task information. Second, professional medical expertise is used to adjust the weighted scores of health characteristics. Third, we use a semi-automated feature extraction framework to enhance the analytical power of language models and incorporate expert insights to improve the accuracy of disease prediction. We have conducted disease prediction experiments on a large number of health reports to assess the effectiveness of Health-LLM. The results of the experiments indicate that the proposed system surpasses traditional methods and has the potential to revolutionize disease prediction and personalized health management. The code is available at https://github.com/jmyissb/HealthLLM.
翻译:暂无翻译