With the ever-increasing speed and volume of knowledge production and consumption, scholarly communication systems have been rapidly transformed into digitised and networked open ecosystems, where preprint servers have played a pivotal role. However, evidence is scarce regarding how this paradigm shift has affected the dynamics of collective attention on scientific knowledge. Herein, we address this issue by investigating the citation dynamics of more than 1.5 million eprints on arXiv, the most prominent and oldest eprint archive. The discipline-average citation history curves are estimated by applying a nonlinear regression model to the long-term citation data. The revealed spatiotemporal characteristics, including the growth and obsolescence patterns, are shown to vary across disciplines, reflecting the different publication and citation practices. The results are used to develop a spatiotemporally normalised citation index, called the $\gamma$-index, with an approximately normal distribution. It can be used to compare the citational impact of individual papers across disciplines and time periods, providing a less biased measure of research impact than those widely used in the literature and in practice. Further, a stochastic model for the observed spatiotemporal citation dynamics is derived, reproducing both the Lognormal Law for the cumulative citation distribution and the time trajectory of average citations in a unified formalism.
翻译:随着知识生产和消费速度和数量不断增加,学术通信系统迅速转变为数字化和网络开放的生态系统,预印服务器发挥了关键作用,然而,关于这种范式转变如何影响科学知识集体关注的动态,证据很少。在这里,我们通过调查150多万份在最突出和最古老的Arxiv(最突出和最古老的电子档案)上的引用率动态来解决这一问题。学科平均引用历史曲线是通过对长期引用数据采用非线性回归模型来估计的。显示,公开的时空特征,包括增长和过时模式,在不同学科之间各不相同,反映了不同的出版和引用做法。结果用来开发一个随机的正常引用指数,称为$\gamma$-index,大致正常的分布。可以用来比较单个论文在学科和时间段间的引用影响,对研究影响进行比文献和实践中广泛使用的偏差度较少。此外,为观察到的常态历史时序分析,对所观察到的年均时序进行的正式数据流分析模型,是所观察到的常态流传法的常态和常态流传法。