Evolutionary algorithms have been applied to a wide range of stochastic problems. Motivated by real-world problems where constraint violations have disruptive effects, this paper considers the chance-constrained knapsack problem (CCKP) which is a variance of the binary knapsack problem. The problem aims to maximize the profit of selected items under a constraint that the knapsack capacity bound is violated with a small probability. To tackle the chance constraint, we introduce how to construct surrogate functions by applying well-known deviation inequalities such as Chebyshev's inequality and Chernoff bounds. Furthermore, we investigate the performance of several deterministic approaches and introduce a single- and multi-objective evolutionary algorithm to solve the CCKP. In the experiment section, we evaluate and compare the deterministic approaches and evolutionary algorithms on a wide range of instances. Our experimental results show that a multi-objective evolutionary algorithm outperforms its single-objective formulation for all instances and performance better than deterministic approaches according to the computation time. Furthermore, our investigation points out in which circumstances to favour Chebyshev's inequality or the Chernoff bound when dealing with the CCKP.
翻译:进化算法被应用于一系列广泛的随机问题。 受现实世界问题的驱使, 约束性违约具有破坏性效应, 本文考虑了机会限制的 knapsack 问题( CCKP ), 这是二进制 knapsack 问题的一个差异。 问题的目的是在 knapsack 能力约束受侵犯的制约下, 最大限度地增加选定项目的利润, 其限制是 knapsack 能力受约束的概率很小。 为了应对机会限制, 我们引入了如何通过应用众所周知的偏差不平等( 如Chebyshev 的不平等和 Chernoff 界限)来构建代位功能。 此外, 我们调查了几种确定性方法的性能, 并引入了一种单一和多目标的进化算法来解决 CCKP 。 在实验部分, 我们评估和比较了多种情况下的确定性方法和进化算法。 我们的实验结果表明, 一种多目标进化算法比计算时间的单一目标配方所有情况和性都好于确定性。 此外, 我们的调查指出在哪些情况下, 支持Chebyshev 的不平等或切诺夫 约束 。