Image denoising is an essential part of many image processing and computer vision tasks due to inevitable noise corruption during image acquisition. Traditionally, many researchers have investigated image priors for the denoising, within the Bayesian perspective based on image properties and statistics. Recently, deep convolutional neural networks (CNNs) have shown great success in image denoising by incorporating large-scale synthetic datasets. However, they both have pros and cons. While the deep CNNs are powerful for removing the noise with known statistics, they tend to lack flexibility and practicality for the blind and real-world noise. Moreover, they cannot easily employ explicit priors. On the other hand, traditional non-learning methods can involve explicit image priors, but they require considerable computation time and cannot exploit large-scale external datasets. In this paper, we present a CNN-based method that leverages the advantages of both methods based on the Bayesian perspective. Concretely, we divide the blind image denoising problem into sub-problems and conquer each inference problem separately. As the CNN is a powerful tool for inference, our method is rooted in CNNs and propose a novel design of network for efficient inference. With our proposed method, we can successfully remove blind and real-world noise, with a moderate number of parameters of universal CNN.


翻译:图像脱色是许多图像处理和计算机视觉任务的一个基本部分,原因是在获取图像过程中不可避免的噪音腐败。传统上,许多研究人员都根据图像属性和统计,在巴伊西亚视角内调查了拆除图像的前期情况。最近,深刻的进化神经网络(CNNs)通过纳入大规模合成数据集,在图像脱色方面取得了巨大成功。但是,它们都有利弊。虽然深层次的CNN对消除噪音和已知统计数据的力量很强,但它们往往缺乏灵活性和实用性,对盲人和现实世界的噪音也往往缺乏实用性。此外,他们无法轻易使用明确的前科。另一方面,传统的非学习方法可能涉及明确的图像前科,但它们需要大量计算时间,无法利用大规模的外部数据集。在本文件中,我们介绍了一种CNN的CNN方法,利用这两种方法在巴伊西亚视角上的好处。具体地说,我们将失明的图像淡化问题分为一个子问题,并分别解决每个问题。此外,由于CNN是一个强有力的判断工具,因此,传统的非学习方法可能涉及明确的前科,因此,我们的网络在现实的参数中可以顺利地推算出一个我们所拟议的系统。

0
下载
关闭预览

相关内容

图像降噪是图像处理中的专业术语。现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。减少数字图像中噪声的过程称为图像降噪,有时候又称为图像去噪。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2020年8月3日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员