In human and hand pose estimation, heatmaps are a crucial intermediate representation for a body or hand keypoint. Two popular methods to decode the heatmap into a final joint coordinate are via an argmax, as done in heatmap detection, or via softmax and expectation, as done in integral regression. Integral regression is learnable end-to-end, but has lower accuracy than detection. This paper uncovers an induced bias from integral regression that results from combining the softmax and the expectation operation. This bias often forces the network to learn degenerately localized heatmaps, obscuring the keypoint's true underlying distribution and leads to lower accuracies. Training-wise, by investigating the gradients of integral regression, we show that the implicit guidance of integral regression to update the heatmap makes it slower to converge than detection. To counter the above two limitations, we propose Bias Compensated Integral Regression (BCIR), an integral regression-based framework that compensates for the bias. BCIR also incorporates a Gaussian prior loss to speed up training and improve prediction accuracy. Experimental results on both the human body and hand benchmarks show that BCIR is faster to train and more accurate than the original integral regression, making it competitive with state-of-the-art detection methods.


翻译:在人和手的表面估计中,热映射是人体或手键点的关键中间代表。两种将热映射解码成最终联合坐标的流行方法,如热映射探测,或软映射和期望,如整体回归。综合回归是可学习的端到端,但精确度低于检测。本文揭示了综合回归的诱导偏差,这种偏差是软映射和预期操作相结合的结果。这种偏差往往迫使网络学习本地化的热映射,掩盖关键点的真正基本分布并导致更低的偏差。从培训角度看,通过调查整体回归的梯度,我们通过调查整体回归的梯度,显示更新热映射的整体回归的隐含指导比检测慢。为了克服上述两个限制,我们建议Bias综合综合综合回归(BCIR),一个综合回归框架,以弥补偏差。BCIR还包含一个高斯前损失,以加快培训并改进预测准确度。从实验性结果看,在人类整体回归学上,实验性结果是更快速的,而先导测得更精确的。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Arxiv
1+阅读 · 2023年3月16日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
Top
微信扫码咨询专知VIP会员