To counter the volatile nature of renewable energy sources, gas networks take a vital role. But, to ensure fulfillment of contracts under these new circumstances, a vast number of possible scenarios, incorporating uncertain supply and demand, has to be simulated ahead of time. This many-query task can be accelerated by model order reduction, yet, large-scale, nonlinear, parametric, hyperbolic partial differential (-algebraic) equation systems, modeling gas transport, are a challenging application for model reduction algorithms. For this industrial application, we bring together the scientific computing topics of: mathematical modeling of gas transport networks, numerical simulation of hyperbolic partial differential equation, and model order reduction for nonlinear parametric systems. This research resulted in the "morgen" (Model Order Reduction for Gas and Energy Networks) software platform, which enables modular testing of various combinations of models, solvers, and model reduction methods. In this work we present the theoretical background on systemic modeling and structured, data-driven, system-theoretic model reduction for gas networks, as well as the implementation of "morgen" and associated numerical experiments testing model reduction adapted to gas network models.
翻译:为了应对可再生能源的不稳定性,天然气网络发挥着关键作用。但是,为了确保在这些新情况下履行合同,必须提前模拟大量可能的设想,包括不确定的供求情况。这一许多棘手的任务可以通过减少示范订单来加速,然而,大规模、非线性、参数性、超偏差部分(代谢性)方程系统、天然气运输模型是减少模式算法的一个具有挑战性的应用。对于这一工业应用,我们汇集了科学计算主题:气体运输网络数学模型、超单偏偏部分方程数字模拟和非线性参数系统示范订单削减。这一研究产生了“减少气体和能源网络模式”软件平台,使各种模型、解答器和模型削减方法的组合能够进行模块测试。 在这项工作中,我们介绍了关于系统建模和结构、数据驱动、系统理论模型减少天然气网络的科学理论背景,以及实施“摩尔根”和相关的数字实验模型,以适应气体网络模型。