Motivation: Stochastic reaction networks are a widespread model to describe biological systems where the presence of noise is relevant, such as in cell regulatory processes. Unfortu-nately, in all but simplest models the resulting discrete state-space representation hinders analytical tractability and makes numerical simulations expensive. Reduction methods can lower complexity by computing model projections that preserve dynamics of interest to the user. Results: We present an exact lumping method for stochastic reaction networks with mass-action kinetics. It hinges on an equivalence relation between the species, resulting in a reduced network where the dynamics of each macro-species is stochastically equivalent to the sum of the original species in each equivalence class, for any choice of the initial state of the system. Furthermore, by an appropriate encoding of kinetic parameters as additional species, the method can establish equivalences that do not depend on specific values of the parameters. The method is supported by an efficient algorithm to compute the largest species equivalence, thus the maximal lumping. The effectiveness and scalability of our lumping technique, as well as the physical interpretability of resulting reductions, is demonstrated in several models of signaling pathways and epidemic processes on complex networks. Availability: The algorithms for species equivalence have been implemented in the software tool ERODE, freely available for download from https://www.erode.eu.
翻译:动力: 蒸汽反应网络是描述生物系统的广泛模型,其中噪音的存在具有相关性,例如在细胞调节过程中。 意外地,在所有最简单的模型中,由此产生的离散状态-空间代表会阻碍分析可移动性,并使数字模拟变得昂贵。 减少方法可以通过计算模型预测降低复杂性,从而保持用户感兴趣的动态。 结果: 我们提出了一种精确的随机反应网络与质量运动动因反应网络的组合法。 它取决于物种之间的等值关系,导致网络的缩小,使每个大型物种的动态与每个等同类中的原始物种的总和相近,从而对系统初始状态作出任何选择。 此外,通过适当的动能参数编码,该方法可以建立不取决于具体参数值的等值。 该方法得到一种高效率的算法的支持,以计算最大物种等同性,从而实现最大团结。 我们的组合技术的有效性和可扩展性,以及由此导致的降值的实际可解释性等同值。 在多种流行病/变异性模型中,可以使用多种移动性模型。