This article offers several contributions to the interdisciplinary project of responsible research and innovation in data science and AI. First, it provides a critical analysis of current efforts to establish practical mechanisms for algorithmic assessment, which are used to operationalise normative principles, such as sustainability, accountability, transparency, fairness, and explainability, in order to identify limitations and gaps with the current approaches. Second, it provides an accessible introduction to the methodology of argument-based assurance, and explores how it is currently being applied in the development of safety cases for autonomous and intelligent systems. Third, it generalises this method to incorporate wider ethical, social, and legal considerations, in turn establishing a novel version of argument-based assurance that we call 'ethical assurance'. Ethical assurance is presented as a structured means for unifying the myriad practical mechanisms that have been proposed, as it is built upon a process-based form of project governance that supports inclusive and participatory ethical deliberation while also remaining grounded in social and technical realities. Finally, it sets an agenda for ethical assurance, by detailing current challenges, open questions, and next steps, which serve as a springboard to build an active (and interdisciplinary) research programme as well as contribute to ongoing discussions in policy and governance.


翻译:本条为数据科学和AI领域负责任的研究和创新的跨学科项目提供了若干贡献。第一,对目前为建立算法评估实际机制而作的努力进行批判性分析,这种机制用于实施可持续性、问责制、透明度、公平性和可解释性等规范性原则,以便查明现有方法的局限性和差距。第二,它为基于论据的保证方法提供了方便的介绍,并探讨了目前在为自主和智能系统制定安全案例时如何应用这种方法。第三,它概括了这一方法,将更广泛的道德、社会和法律考虑纳入其中,反过来,它又建立了我们称之为“道德保证”的基于论据的保证的新版本。道德保证是统一所提出的各种实际机制的结构性手段,因为它建立在基于程序的项目管理形式上,支持包容性和参与性的道德审议,同时仍然以社会和技术现实为基础。最后,它为道德保障制定了议程,详细介绍了当前的挑战、开放问题和下一步步骤,作为建立积极(和跨学科)研究方案的跳板,并为正在进行的政策治理和讨论作出贡献。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关VIP内容
专知会员服务
18+阅读 · 2020年9月6日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Top
微信扫码咨询专知VIP会员