This paper introduces Hill-ADAM. Hill-ADAM is an optimizer with its focus towards escaping local minima in prescribed loss landscapes to find the global minimum. Hill-ADAM escapes minima by deterministically exploring the state space. This eliminates uncertainty from random gradient updates in stochastic algorithms while seldom converging at the first minimum that visits. In the paper we first derive an analytical approximation of the ADAM Optimizer step size at a particular model state. From there define the primary condition determining ADAM limitations in escaping local minima. The proposed optimizer algorithm Hill-ADAM alternates between error minimization and maximization. It maximizes to escape the local minimum and minimizes again afterward. This alternation provides an overall exploration throughout the loss space. This allows the deduction of the global minimum's state. Hill-ADAM was tested with 5 loss functions and 12 amber-saturated to cooler-shade image color correction instances.


翻译:本文提出Hill-ADAM优化器。该优化器专注于逃离预设损失曲面中的局部极小值以寻找全局极小值。Hill-ADAM通过确定性探索状态空间来逃离极小值点,这消除了随机算法中梯度更新的不确定性,同时避免频繁收敛于首次访问的极小值。本文首先推导了ADAM优化器在特定模型状态下的步长解析近似表达式,进而定义了决定ADAM逃离局部极小值能力局限性的核心条件。所提出的Hill-ADAM优化算法在误差最小化与最大化之间交替执行:通过最大化阶段逃离局部极小值,随后恢复最小化过程。这种交替机制实现了对损失空间的系统性探索,从而能够推断出全局极小值的状态。Hill-ADAM在5种损失函数和12个从琥珀饱和色到冷色调的图像色彩校正实例中进行了验证。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员