Quantum approximate optimization algorithm (QAOA) is one of the popular quantum algorithms that are used to solve combinatorial optimization problems via approximations. QAOA is able to be evaluated on both physical and virtual quantum computers simulated by classical computers, with virtual ones being favored for their noise-free feature and availability. Nevertheless, performing QAOA on virtual quantum computers suffers from a slow simulation speed for solving combinatorial optimization problems which require large-scale quantum circuit simulation (QCS). In this paper, we propose techniques to accelerate QCS for QAOA using mathematical optimizations to compress quantum operations, incorporating efficient bitwise operations to further lower the computational complexity, and leveraging different levels of parallelisms from modern multi-core processors, with a study case to show the effectiveness on solving max-cut problems.
翻译:暂无翻译