The expressiveness of flow-based models combined with stochastic variational inference (SVI) has expanded the application of optimization-based Bayesian inference to highly complex problems. However, despite the importance of multi-model Bayesian inference, defined over a transdimensional joint model and parameter space, flow-based SVI has been limited to problems defined over a fixed-dimensional parameter space. We introduce CoSMIC normalizing flows (COntextually-Specified Masking for Identity-mapped Components), an extension to neural autoregressive conditional normalizing flow architectures that enables use of a single amortized variational density for inference over a transdimensional (multi-model) conditional target distribution. We propose a combined stochastic variational transdimensional inference (VTI) approach to training CoSMIC flows using ideas from Bayesian optimization and Monte Carlo gradient estimation. Numerical experiments show the performance of VTI on challenging problems that scale to high-cardinality model spaces.


翻译:基于流的模型表达能力与随机变分推理(SVI)的结合,已将基于优化的贝叶斯推理应用扩展至高度复杂的问题。然而,尽管跨维度联合模型与参数空间的多模型贝叶斯推理具有重要意义,基于流的SVI此前仍局限于固定维度参数空间的问题。我们提出了CoSMIC归一化流(上下文指定掩码的恒等映射组件),这是对神经自回归条件归一化流架构的扩展,使得单个摊销变分密度能够用于跨维度(多模型)条件目标分布的推理。我们提出了一种结合随机变分跨维度推理(VTI)的方法,利用贝叶斯优化和蒙特卡洛梯度估计的思想训练CoSMIC流。数值实验展示了VTI在具有挑战性问题上的性能,这些问题可扩展至高基数模型空间。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员