We consider online coordinated precoding design for downlink wireless network virtualization (WNV) in a multi-cell multiple-input multiple-output (MIMO) network with imperfect channel state information (CSI). In our WNV framework, an infrastructure provider (InP) owns each base station that is shared by several service providers (SPs) oblivious of each other. The SPs design their precoders as virtualization demands for user services, while the InP designs the actual precoding solution to meet the service demands from the SPs. Our aim is to minimize the long-term time-averaged expected precoding deviation over MIMO fading channels, subject to both per-cell long-term and short-term transmit power limits. We propose an online coordinated precoding algorithm for virtualization, which provides a fully distributed semi-closed-form precoding solution at each cell, based only on the current imperfect CSI without any CSI exchange across cells. Taking into account the two-fold impact of imperfect CSI on both the InP and the SPs, we show that our proposed algorithm is within an $O(\delta)$ gap from the optimum over any time horizon, where $\delta$ is a CSI inaccuracy indicator. Simulation results validate the performance of our proposed algorithm under two commonly used precoding techniques in a typical urban micro-cell network environment.
翻译:我们认为,在一个多细胞多投入多输出多输出(MIMO)网络中,在不完善的频道状态信息(CSI)下传无线网络虚拟化(WNV)下行的在线协调预编码设计。在我们的WNV框架内,一个基础设施提供者(InP)拥有每个基地站,由几个服务提供商(SPs)相互忽视。SPs将预编码设计成对用户服务的虚拟化需求,而InP公司设计实际预编码解决方案,以满足SPs的服务需求。我们的目标是最大限度地减少MIMO中流渠道的长期平均预期预编码偏差,但要符合每个细胞的长期和短期传输电源限制。我们提议了一个在线协调的虚拟化预编码算法,每个细胞提供完全分布的半封闭式预编码解决方案,其基础只是目前不完善的 CSI,而没有在跨细胞间进行任何 CSI 之前的交流。考虑到不完善的 CSI 对InP和SP的双重影响,我们提议的CIS 的算法在CLA值范围内,我们提议的CDELA值在两个时间范围内,我们提议的CILULULA值的SUDL 。