A digital twin is a powerful tool that can help monitor and optimize physical assets in real-time. Simply put, it is a virtual representation of a physical asset, enabled through data and simulators, that can be used for a variety of purposes such as prediction, monitoring, and decision-making. However, the concept of digital twin can be vague and difficult to understand, which is why a new concept called "capability level" has been introduced. This concept categorizes digital twins based on their capability and defines a scale from zero to five, with each level indicating an increasing level of functionality. These levels are standalone, descriptive, diagnostic, predictive, prescriptive, and autonomous. By understanding the capability level of a digital twin, we can better understand its potential and limitations. To demonstrate the concepts, we use a modern house as an example. The house is equipped with a range of sensors that collect data about its internal state, which can then be used to create digital twins of different capability levels. These digital twins can be visualized in virtual reality, allowing users to interact with and manipulate the virtual environment. The current work not only presents a blueprint for developing digital twins but also suggests future research directions to enhance this technology. Digital twins have the potential to transform the way we monitor and optimize physical assets, and by understanding their capabilities, we can unlock their full potential.


翻译:数字双胞胎是一个强大的工具,可以帮助实时监测和优化物理资产。简言之,它是一个实物资产的虚拟代表,可以通过数据和模拟器实现,可以用于预测、监测和决策等各种目的。然而,数字双胞胎的概念可能模糊不清,难以理解,这就是为什么引入了一个名为“能力水平”的新概念的原因。这个概念将数字双胞胎按其能力进行分类,确定一个从零到5的等级,每个等级显示功能水平的提高。这些等级是独立的、描述性的、诊断性的、预测性的、指令性的和自主的。通过理解数字双胞胎的能力水平,我们可以更好地了解其潜力和局限性。为了展示这些概念,我们用现代房子作为例子。这个房子配备了一系列传感器,收集其内部状态的数据,然后可以用来创造不同能力水平的数字双胞胎。这些数字双胞胎可以在虚拟现实中被视觉化,允许用户与虚拟环境进行互动和操作。目前的工作不仅提供了数字双胞胎的蓝图,而且可以显示未来对数字双胞胎的研究方向,我们可以通过更新其潜力来提升它们。</s>

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
11+阅读 · 2021年3月25日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员