Two graphs are homomorphism indistinguishable over a graph class $\mathcal{F}$, denoted by $G \equiv_{\mathcal{F}} H$, if $\operatorname{hom}(F,G) = \operatorname{hom}(F,H)$ for all $F \in \mathcal{F}$ where $\operatorname{hom}(F,G)$ denotes the number of homomorphisms from $F$ to $G$. A classical result of Lov\'{a}sz shows that isomorphism between graphs is equivalent to homomorphism indistinguishability over the class of all graphs. More recently, there has been a series of works giving natural algebraic and/or logical characterizations for homomorphism indistinguishability over certain restricted graph classes. A class of graphs $\mathcal{F}$ is homomorphism-distinguishing closed if, for every $F \notin \mathcal{F}$, there are graphs $G$ and $H$ such that $G \equiv_{\mathcal{F}} H$ and $\operatorname{hom}(F,G) \neq \operatorname{hom}(F,H)$. Roberson conjectured that every class closed under taking minors and disjoint unions is homomorphism-distinguishing closed which implies that every such class defines a distinct equivalence relation between graphs. In this note, we confirm this conjecture for the classes $\mathcal{T}_k$, $k \geq 1$, containing all graphs of tree-width at most $k$.
翻译:在图类 $\mathcal{F}$ 上,如果 $\operatorname{hom}(F,G) = \operatorname{hom}(F,H)$ 对于所有的 $F \in \mathcal{F}$ 都成立,则称图 $G$ 和图 $H$ 在 $\mathcal{F}$ 下同态不可区分,记作 $G \equiv_{\mathcal{F}} H$。Lov\'{a}sz 的经典结果表明,图的同构等价于在所有图的类上同态不可区分。近年来,一系列工作为某些受限的图类提供了自然的代数或逻辑特征来描述同态不可区分。对于每个 $F \notin \mathcal{F}$,如果存在图 $G$ 和 $H$,使得 $G \equiv_{\mathcal{F}} H$ 且 $\operatorname{hom}(F,G) \neq \operatorname{hom}(F,H)$,则称图类 $\mathcal{F}$ 是同态判别封闭的。Roberson 猜测,所有“取子图和不相交并闭”这一性质的图类都是同态判别封闭的,这意味着每个这样的类都定义了图之间的不同等价关系。在本文中,我们证明了这个猜想对于包含所有树宽不超过 $k$ 的图的类 $\mathcal{T}_k$ 成立。