We study real steady state varieties of the dynamics of chemical reaction networks. The dynamics are derived using mass action kinetics with parametric reaction rates. The models studied are not inherently parametric in nature. Rather, our interest in parameters is motivated by parameter uncertainty, as reaction rates are typically either measured with limited precision or estimated. We aim at detecting toricity and shifted toricity, using a framework that has been recently introduced and studied for the non-parametric case over both the real and the complex numbers. While toricity requires that the variety specifies a subgroup of the direct power of the multiplicative group of the underlying field, shifted toricity requires only a coset. In the non-parametric case these requirements establish real decision problems. In the presence of parameters we must go further and derive necessary and sufficient conditions in the parameters for toricity or shifted toricity to hold. Technically, we use real quantifier elimination methods. Our computations on biological networks here once more confirm shifted toricity as a relevant concept, while toricity holds only for degenerate parameter choices.
翻译:我们研究的是化学反应网络动态的真正稳定状态的种类。 动态是使用质量动作动能和参数反应率得出的。 所研究的模型并非本质上的参数性质。 相反, 我们对于参数的兴趣是由参数不确定性驱动的, 因为反应率通常是以有限的精确度或估计值来衡量的。 我们的目标是检测离谱性和转移偏向性, 使用最近采用并研究过的非参数案例对真实和复杂数字进行的研究的框架。 虽然偏向性要求这些种类指定了基础领域多复制性组直接力量的分组, 转移偏向只需要一个复位。 在非参数的情况下, 这些要求造成了真正的决定问题。 在参数存在时, 我们必须更进一步, 在参数参数中得出必要和充分的条件, 以便保持精确度或转换偏向。 从技术上讲, 我们在这里的生物网络的计算方法一旦再次证实, 我们的生物网络的计算方法就将改变为相关概念, 而相对偏差的参数选择则只能维持。