A three-hidden-layer neural network with super approximation power is introduced. This network is built with the Floor function ($\lfloor x\rfloor$), the exponential function ($2^x$), the step function (${1\hspace{-3.6pt}1}_{x\geq 0}$), or their compositions as the activation function in each neuron and hence we call such networks as Floor-Exponential-Step (FLES) networks. For any width hyper-parameter $N\in\mathbb{N}^+$, it is shown that FLES networks with width $\max\{d,N\}$ and three hidden layers can uniformly approximate a H\"older continuous function $f$ on $[0,1]^d$ with an exponential approximation rate $3\lambda (2\sqrt{d})^{\alpha} 2^{-\alpha N}$, where $\alpha \in(0,1]$ and $\lambda>0$ are the H\"older order and constant, respectively. More generally for an arbitrary continuous function $f$ on $[0,1]^d$ with a modulus of continuity $\omega_f(\cdot)$, the constructive approximation rate is $2\omega_f(2\sqrt{d}){2^{-N}}+\omega_f(2\sqrt{d}\,2^{-N})$. Moreover, we extend such a result to general continuous functions on a bounded set $E\subseteq\mathbb{R}^d$. As a consequence, this new class of networks overcomes the curse of dimensionality in approximation power when the variation of $\omega_f(r)$ as $r\rightarrow 0$ is moderate (e.g., $\omega_f(r)\lesssim r^\alpha$ for H\"older continuous functions), since the major term to be concerned in our approximation rate is essentially $\sqrt{d}$ times a function of $N$ independent of $d$ within the modulus of continuity. Finally, we extend our analysis to derive similar approximation results in the $L^p$-norm for $p\in[1,\infty)$ via replacing Floor-Exponential-Step activation functions by continuous activation functions.
翻译:引入一个具有超近效的三层神经网络 。 对于任何宽度超参数 $N\ in\ mathb{N ⁇, 显示具有宽度的FLES网络 $xx$, 指数函数 (2xxxxxx), 步骤函数 ({1\hspace{-3.6pt}1}x\geqQ 0}), 或它们的构成作为每个神经的激活功能。 因此我们称这些网络为“Flor-Expertial-le” 网络 。 对于任何宽度超值超值 $( N\ n$xx$x美元, 美元和3个隐藏层) 显示, 宽度的FLES 网络 $xxxx$xxxxxxxxxxxxxxxxxxxxxxxxx, 以3\lambda (2\qrt} 3qrqr\\\\\\pha) 。 max max a max a time, modeal- mother max_ maxxxxxxxxx 。 us axxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx