We address the mobility management of an autonomous UAV-mounted base station (UAV-BS) that provides communication services to a cluster of users on the ground while the geographical characteristics (e.g., location and boundary) of the cluster, the geographical locations of the users, and the characteristics of the radio environment are unknown. UAVBS solely exploits the received signal strengths (RSS) from the users and accordingly chooses its (continuous) 3-D speed to constructively navigate, i.e., improving the transmitted data rate. To compensate for the lack of a model, we adopt policy gradient deep reinforcement learning. As our approach does not rely on any particular information about the users as well as the radio environment, it is flexible and respects the privacy concerns. Our experiments indicate that despite the minimum available information the UAV-BS is able to distinguish between high-rise (often non-line-of-sight dominant) and sub-urban (mainly line-of-sight dominant) environments such that in the former (resp. latter) it tends to reduce (resp. increase) its height and stays close (resp. far) to the cluster. We further observe that the choice of the reward function affects the speed and the ability of the agent to adhere to the problem constraints without affecting the delivered data rate.


翻译:我们处理的是自动无人驾驶航空器(UAV-BS)基地站的流动管理问题,该基地站向地面用户群提供通信服务,而该基地站的地理特征(例如位置和边界)、用户的地理位置和无线电环境的特征尚不得而知,无人驾驶航空器只利用用户收到的信号强力(RSS),因此选择其(连续)三维速度进行建设性导航,即改进传送的数据率。为弥补缺乏模型的情况,我们采用政策梯度深度强化学习。由于我们的方法并不依赖关于用户和无线电环境的任何特定信息,因此它具有灵活性并尊重隐私问题。我们的实验表明,尽管现有信息最少,但无人驾驶航空器能够区分高层(通常不见直线主导)和郊区(主要直线主导)环境,如前者(后一类)往往减少(增加)其高度并保持近距离(暂停)接近(暂停)辐射环境,从而影响所交付的数据速度。我们观察的是,如何进一步减少(减少)其高度和保持(维持)其交付能力,从而影响所交付的数据速度。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
6+阅读 · 2019年7月29日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员